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The behaviour of the interface between stratified thin liquid films bounded by parallel
solid surfaces and subject to van der Waals forces which drive dewetting is studied in
this work. Chemically homogeneous surfaces are considered first; this is followed by an
investigation of chemically heterogeneous surfaces. The lubrication approximation is
applied to obtain a single nonlinear evolution equation which describes the interfacial
behaviour, and both the linear stability and nonlinear development of the interface
are examined. The sensitivity of the interfacial rupture time to problem parameters
such as the viscosity ratio, initial interfacial height, interfacial tension, and magnitude
of the van der Waals forces is characterized in detail for the homogeneous case.
This serves as a basis for a study of the heterogeneous case, where the strong
dependence of the rupture time on the length scale of the heterogeneity is found
to be relatively independent of changes in the remaining problem parameters. The
mechanisms underlying the rupture-time behaviour are also explored in detail. The
results suggest a route by which one liquid can become emulsified in the other, and
may be beneficial to industrial processes such as lithographic printing which are based
on wettability phenomena.

1. Introduction
The study of thin liquid films has been motivated by their ubiquity. These films

occur both naturally and industrially, where the interest may be in maintaining a
stable film in a coating process or in controlling dewetting behaviour in order to create
novel nanostructures or microstructures (Kargupta & Sharma 2002). An important
extension of thin-liquid-film studies is the case where the film is not bounded by air
at its free surface but by another thin liquid film adjacent to a solid surface. Such
stratified thin liquid films between parallel surfaces may be subject to a competitive
displacement, which occurs when both films are subject to van der Waals forces that
would tend to rupture a solitary film. The rupture of one film occurs via displacement
by the other film, and a competition exists between the two films to determine which
displaces the other. An additional competition becomes important when one of the
surfaces is chemically patterned. In this case, the length scales of the more-wettable
and less-wettable areas of the surface will compete with the system’s natural horizontal
length scale, given by the wavelength of the disturbance mode that grows most rapidly
on an unpatterned surface, to determine the mechanism by which rupture occurs. A
study of these competitions is the subject of this work.

The lithographic printing process is a practical motivation for examining the system
described above. As the world’s leading technique for the creation of printed mass
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media, lithographic printing is being explored for the mass-production of electronic
materials (Harrey et al. 1999; Leyland, Evans & Harrison 2002), but its fundamentals
remain poorly understood. Successful operation of the process (MacPhee 1998) relies
on the transfer of ink from a carrier roll to the hydrophobic areas of a chemically
patterned printing plate through a thin barrier film of a water-like fountain solution.
Defect-free printing requires that the fountain-solution film maintains stability on
the hydrophilic ‘non-image’ regions, but becomes unstable and ruptures on the
hydrophobic ‘image’ regions. The fountain solution preferentially wets the hydrophilic
areas, whereas the ink preferentially wets the hydrophobic areas. The models presented
in this paper provide a starting point for the understanding of this mechanism, in
which ink displaces the fountain-solution layer to form an emulsion on the image
areas of the printing plate.

Before proceeding, a review of prior work is necessary to put our own work into the
proper context. Early theoretical analyses of thin liquid films were conducted by Vrij
(1966) and Sheludko (1967), who explored the physical mechanisms that lead to the
rupture of free films and of films on chemically homogeneous substrates. They laid
the groundwork for subsequent studies, many of which were based on simplifying the
governing equations via the lubrication approximation (Benney 1966; Oron, Davis &
Bankoff 1997). This method was employed by Ruckenstein & Jain (1974) to examine
the linear stability of a substrate-bound film subject to van der Waals forces that drive
dewetting and by Williams & Davis (1982) to perform a full nonlinear simulation of a
similar film approaching rupture. The van der Waals forces are included in these mod-
els as a body-force term that is derived by taking the gradient of a disjoining pressure.
The nonlinear evolution equation derived by Williams & Davis (1982) was shown by
Zhang & Lister (1999) to exhibit an infinite number of similarity solutions near film
rupture, and the linear stability of such solutions was studied by Witelski & Bernoff
(1999). Sharma & Jameel (1993) examined the case in which a film was subjected
to polar forces in addition to these apolar van der Waals forces. Polar forces are of
shorter range, and their inclusion in the model leads to scenarios in which a film can
reach a phase-separated equilibrium rather than rupture. The behaviour of films in the
presence of insoluble (Jensen & Grotberg 1992) and soluble (Jensen & Grotberg 1993)
surfactants has been considered, for cases where the flows are generated by surface-
tension gradients due to heterogeneous surfactant concentration. Evolution equations
have also been derived for free films in the presence of insoluble (de Wit, Gallez &
Christov 1994) and soluble (Matar 2002) surfactants, and more recently, for films on
flexible walls (Matar & Kumar 2004) and elastomers (Matar, Gkanis & Kumar 2005).

The behaviour of stratified thin liquid films on chemically homogeneous surfaces
is a direct extension of the above body of work. An early extension was provided by
Yiantsios & Higgins (1991), who derived a two-layer evolution equation for a single
liquid film bounded above by a semi-infinite viscous liquid. Actual stratified films
with two free surfaces have been examined in the context of tear films found in the
human eye. Sharma & Ruckenstein (1985) proposed a mechanism for rupture in such
a bilayer based on a two-step process, the key feature being the rupture of the lower
mucus layer due to van der Waals forces, followed by rapid rupture of the aqueous top
layer on the hydrophobic cornea substrate. This idea was later developed more fully
by the same authors using analytical methods (Sharma & Ruckenstein 1986a, b). A
full nonlinear simulation of the problem was performed by Zhang, Matar & Craster
(2003), who considered the lower mucus layer to be shear-thinning. Independently
of the literature on tear films, the stability of general stratified liquid layers with
two free surfaces has been examined (Danov et al. 1998a, b; Paunov et al. 1998),
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as have the different pathways to rupture, which depend on which layer ruptures
more rapidly (Pototsky et al. 2004). Fisher & Golovin (2005) recently performed a
nonlinear stability analysis and found that these layers may evolve to form a series of
drops separated by thin wetting layers even in the absence of short-range repulsion.
Only a single free surface is encountered in the work of Joo & Hsieh (2000), who
considered the case of two liquids held between parallel solid surfaces and subject to
both a temperature gradient and van der Waals forces. More recently Merkt et al.
(2005) examined a similar problem, focusing on the effects of gravity, electrostatic
fields, and thermocapillarity on interfacial stability. They did not include the van der
Waals forces which drive rupture, instead using them to stabilize the films in order to
examine pattern formation at long times.

Sharma and coworkers have applied the lubrication approximation to examine
rupture and pattern formation in solitary thin liquid films on chemically heterogeneous
substrates (Konnur, Kargupta & Sharma 2000; Kargupta, Konnur & Sharma 2000;
Zope, Kargupta & Sharma 2001). They found that a film lying on a substrate
with alternating more-wettable and less-wettable stripes would actually rupture more
rapidly than a film lying on a chemically homogeneous surface of the less-wettable
material. In their analysis, the rupture time of a film was determined as being
independent of the length scale of a less-wettable patch on the substrate, as long as
the length scale was greater than a critical value.

A discussion of the experimental work on thin-liquid-film rupture was given by
Seemann, Herminghaus & Jacobs (2001). They noted the difficulty in separating
‘spinodal’ dewetting, predicted by theoretical work like that described above, from
dewetting by external nucleation. Kheshgi & Scriven (1991) visualized dewetting
nucleated externally by dust particles and discussed the mechanisms by which this
occurs. True spinodal dewetting modes were observed by Bischof et al. (1996) in
thin gold films. They detected undulations with the same length scale as predicted
by theory. Stange, Evans & Hendrickson (1997) used atomic-force microscopy to
verify the expected exponential growth rate associated with spinodal dewetting in
thin polymer films. They also compared the relative importance of the two rupture
mechanisms in a clean-room environment. More recently, Karapanagiotis & Gerberich
(2005) used a similar technique to provide a detailed account of the three-dimensional
morphology of spinodal dewetting.

The work described in this paper concerns stratified thin liquid films between
chemically heterogeneous solid surfaces. We first extend the work of Joo & Hsieh
(2000) by performing a more comprehensive study of the stratified system with
chemically homogeneous surfaces (in the absence of thermocapillary effects). The
subsequent introduction of chemical heterogeneity bridges a gap between the work
of Joo & Hsieh (2000) and the work of Sharma and co-workers (Konnur et al. 2000;
Kargupta et al. 2000; Zope et al. 2001). We focus on the case in which the lower
surface is periodically patterned with regions that the bottom liquid will find less-
wettable and more-wettable. We shall find that the rupture times for this lower liquid
have a clear dependence on the length scales of both the less- and more-wettable
regions relative to the wavelength of the most rapidly growing disturbance for a
homogeneous surface. The physical mechanisms that lead to this dependence are
elucidated quantitatively by examining the different contributions to the liquid flow
rates during interfacial evolution. We also find that the dependence is remarkably
robust to variations in the remaining parameters. The problem is formulated in § 2,
results are presented and discussed for the homogeneous and heterogeneous cases in
§ 3 and § 4, respectively, and conclusions are given in § 5.
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Figure 1. Schematic representation of the problem setup, with all labelled quantities in
dimensional form.

2. Problem formulation
We consider two stratified Newtonian liquids between two stationary parallel solid

surfaces; the lower liquid is labelled 1 and the upper liquid is labelled 2 (figure 1).
Making an analogy with lithographic printing, the liquids would represent the

fountain solution and the ink, respectively. The lower solid surface, labelled as 3, is
chemically patterned in a periodic way for studies with heterogeneous surfaces. For
this case, intervals of dimensional length I are patterned in such a way that liquid 2
will wet them whereas liquid 1 will not. Each interval represents an ‘image’ region of
a lithographic printing plate, while the remaining surface of solid 3 is neutral to both
liquids, representing ‘non-image’ areas. The terms ‘image’ and ‘non-image’ will be
used throughout this paper to describe regions to which liquid 1 is less-wettable and
more-wettable, respectively. The left-hand edges of each consecutive image region are
separated by the period size P . The surface of solid 4, as with the non-image areas
of surface 3, is considered neutral to both liquids when we examine heterogeneous
surfaces. The homogeneous-surface limit occurs when either I = 0 or I = P .

2.1. Governing equations

The gap between the two solid surfaces, htot , is taken to be much smaller than the
wavelength of a typical disturbance, λ, so that the lubrication approximation may be
applied. Thus we define the small parameter ε = htot/λ� 1. This leads to the following
scaling for our dimensionless lengths x, z and velocities ui , wi:

x =
εx̃

htot

, z =
z̃

htot

, ui =
ũiρ1htot

µ1

, wi =
w̃iρ1htot

εµ1

, (2.1)

where the subscript i indicates to which liquid the quantity corresponds, µ denotes
viscosity, ρ denotes density and the tilde is used to indicate a dimensional variable.
The scales for the dimensionless time and stress variables are

t =
εt̃µ1

h2
totρ1

, (pi, φi) = (p̃i, φ̃i)
εh2

totρ1

µ2
1

. (2.2)

Here φ is the van der Waals component of the disjoining pressure; it is a potential
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energy per unit volume which takes a form first obtained by Hamaker (1937) and
later applied by Vrij (1966) and Sheludko (1967). For a single particle of material 1
suspended a distance h above a semi-infinite solid of material 3, the expression
for the disjoining pressure is φ = A13/h3, where A13 is the dimensionless Hamaker
constant representing the magnitude of the van der Waals attraction between particle
1 and solid 3. The scaling for the Hamaker constants is εÃijρ1/µ

2
1htot , where Ãij is

a dimensional Hamaker constant representing the attraction between materials i and
j . In our analysis, it is important to use expressions for the van der Waals attraction
felt by single parcels of each liquid at the 1–2 interface, subject to their interactions
with all four materials present in the problem. These are (Kumar & Matar 2004):

φ1 = φ∞
11 + φ∞

12 +
A11 − A13

h3
+

A12 − A14

(1 − h)3
, (2.3)

φ2 = φ∞
22 + φ∞

12 +
A12 − A23

h3
+

A22 − A24

(1 − h)3
, (2.4)

where h =h(x, t) is the interface height. Here φ∞
ij is a constant representing the

potential energy per unit volume felt by a particle of material i at the surface of a
semi-infinite body of material j ; it disappears when the gradients of the expressions
are calculated.

The dimensional momentum balance for liquid i is given by

ρi(∂t̃ ũi + ũi · ∇ũi) = −∇(p̃i + φ̃i) + µi∇2ũi , (2.5)

where ũi is the velocity vector. We have omitted the gravitational body force, as the
small gap distance renders it negligible with respect to capillary and van der Waals
forces. We obtain the lubrication form of the momentum balance by substituting our
dimensionless variables and dropping terms of order ε and smaller:

0 = −∂xp̄i +
µi

µ1

∂2
z ui, (2.6)

0 = ∂zp̄i . (2.7)

Here we have employed a reduced pressure, p̄i:

p̄i = pi + φi. (2.8)

The stress balance at the liquid–liquid interface is given by

T1 · n − T2 · n = −κγ̃ n, (2.9)

where Ti is the stress tensor in liquid i, n is the vector normal to the interface directed
into liquid 2, and κ is the interfacial curvature. The dimensionless normal and shear
stress components in lubrication form are

3γ ∂2
xh = p̄2 − p̄1 − φ2 + φ1, (2.10)

µr∂zu2 = ∂zu1, (2.11)

γ being the dimensionless interfacial tension,

γ = ε3γ̃ ρ1htot/3µ2
1, (2.12)

and µr the viscosity ratio µ2/µ1. Note that in order to keep a balance between
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capillary forces and van der Waals forces, the factor ε3 has been included in the
scaling. Reduced pressures have also been incorporated into (2.10), so the expressions
for the disjoining pressure now only appear in this normal-stress interfacial condition.
No-slip and no-penetration conditions are applied at the solid surfaces. Equations
(2.6), (2.7), (2.10), and (2.11) can be solved to obtain u1(z). The model is completed
by using the kinematic boundary condition at z =h(x, t),

w = ∂th + u∂xh, (2.13)

which can be combined with the continuity equation ∂xui + ∂zwi =0 to yield a
relationship between interfacial position and the flow rate of liquid 1:

0 = ∂th + ∂x

∫ h

0

u1 dz. (2.14)

Substitution of u1 into (2.14) yields an evolution equation for h(x, t):

0 = ∂th + ∂x

{
[1 + (µr − 1)h](1 − h)3h3

3f (h, µr )

[
∂x(φ2 − φ1) + 3γ ∂3

xh
]}

, (2.15)

f (h, µr ) being given by

f (h, µr ) = h4µ2
r − (2h4 − 4h3 + 6h2 − 4h)µr + (h − 1)4. (2.16)

The two terms on the right-hand side of (2.15) are the temporal derivative of the
interfacial height and the spatial derivative of the flow rate of liquid 1. The terms
describing the relative magnitudes of the flow rate components are between the right-
hand pair of square brackets. The first term drives flow through a gradient in the
disjoining pressure. If we substitute (2.3) and (2.4) into this expression, we have

∂x(φ2 − φ1) = 3∂xh

[
A2

(1 − h)4
+

A1

h4

]
+

∂xA2

(1 − h)3
− ∂xA1

h3
, (2.17)

where A1 and A2 are Hamaker constants that describe the magnitude of the van der
Waals attraction of the liquid–liquid interface to surface 3 or surface 4, respectively.
They are composed of the binary Hamaker constants used in (2.3) and (2.4):

A1 = (A11 − A13) + (A23 − A12), (2.18)

A2 = (A22 − A24) + (A14 − A12). (2.19)

Each set of terms within parentheses represents a competition between attractions
that will determine the stability of the interface. For example, if A11 is greater than
A13 then liquid 1 prefers contact with itself over contact with the lower bounding
solid. This scenario would tend to destabilize the interface, as would a positive result
from any of the other three competitions.

Our full evolution equation is given by (2.15), (2.16), and (2.17) and reduces in
certain limits to evolution equations derived in prior works. For constant values of
A1 and A2 in (2.17), it becomes

0 = ∂th + ∂x

{
1 + (µr − 1)h

f (h, µr )

[
∂xh

(
A2

h3

1 − h
+ A1

(1 − h)3

h

)
+ γ (1 − h)3h3∂3

xh

]}
,

(2.20)

which represents the homogeneous-surface limit analyzed by Joo & Hsieh (2000) and
Merkt et al. (2005). It reduces to the equation for a single liquid film on a solid
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Figure 2. Schematic representation of the direction of flow in the lower liquid due to the
three driving forces, the wettability gradient, the wettability, and capillarity. Capillarity acts to
oppose both the other driving forces in an attempt to maintain a stable interface. The curve
shows the interfacial height.

substrate on setting A2 = 0 (no attraction to an upper bounding surface) and µr =0
(absence of a viscous top liquid):

0 = ∂th + A1∂x

(
∂xh

h

)
+ γ ∂x

(
h3∂3

xh
)

(2.21)

This equation was derived by Williams & Davis (1982) and later considered extensively
by Burelbach, Bankoff & Davis (1988). In order to analyse concisely the effect of
chemical patterning on interfacial rupture, we will consider another important limit of
(2.15), in which we let A2 = 0 and make A1 = A1(x) ( � 0). Therefore the liquid–liquid
interface feels an attraction only to certain regions of surface 3, and the evolution
equation becomes

0 = ∂th + ∂x

{
(1 + (µr − 1)h)(1 − h)3h3

3f (h, µr )

[
3∂xh

(
A1

h4

)
− ∂xA1

h3
+ 3γ ∂3

xh

]}
. (2.22)

This problem is consistent with that encountered in lithographic printing.
The three terms within the square brackets in (2.22) give the relative strengths

of the three different contributions to the flow rate of liquid 1. In order, they
are the flow contributions due to wettability, wettability gradients, and capillarity.
These contributions, illustrated schematically in figure 2, can be arrived at by an
interrogation of each term. The wettability contribution, 3∂xh

(
A1/h4

)
, will be positive

only when the interfacial slope is positive, and will have the largest magnitude when
the slope is steep and the interfacial height is small. Thus it will have the largest
magnitude near rupture, driving the flow to the right from locations right of the
rupture (∂xh > 0), and to the left from locations left of the rupture (∂xh < 0).
This flow-rate contribution will always act to facilitate rupture, therefore. Another
contribution conducive to rupture comes from the wettability gradient, expressed as
−∂xA1/h3. This drives the flow of liquid 1 in the opposite direction to ∂xA1, or away
from regions that the liquid–liquid interface finds attractive. It will be seen later that
the magnitude of this term does not change substantially during the rupture process
and plays an important role in initiating it. The capillarity contribution, 3γ ∂3

xh,
opposes the rupture process through capillary pressure gradients. The third derivative
of the interfacial height indicates that the gradient drives flow from regions of low or
negative curvature (concave down) to regions of high or positive curvature (concave
up). The flow is therefore driven towards the location of the eventual rupture, with its
very positive curvature. The interfacial shape also varies subtly in the vicinity of the
wettability gradients, resulting in a flow which opposes that caused by the wettability
gradients. This is discussed quantitatively in § 4.2.
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2.2. Validity of the lubrication approximation

If the wettability gradients are too sharp, the lubrication approximation can be
expected to break down. The width of the transition region between image and non-
image areas in our problem is given by a parameter δ, which is formally defined in the
two different analytical expressions for A1(x) given in the following section, (2.23) and
(2.24). A small value of δ indicates a large wettability gradient and the potential for
breakdown of the theory. Most of the simulation results presented in this work use
the value δ = 0.01, whose meaning can be elucidated by considering a representative
system. If liquids 1 and 2 are 100 nm thick with an interfacial tension of 24 mN m−1,
solid 4 is neutral, and solid 3 is homogeneous with a typical Hamaker constant of
1 × 10−20 J, then the wavelength of the fastest growing disturbance (derived using
the linear theory to be described in § 3.1) is approximately 80 µm. Although this
length is derived for the homogeneous case, we will later show that it still has a
great deal of significance in the heterogeneous case. The above calculation results
in ε = htot/λ= 2.5 × 10−3 and a dimensional transition width δ̃ = δhtot/ε = 4htot . The
length scale of the transition width is therefore still larger than the gap between
the solid surfaces. In addition, the length scales of the image and non-image areas
examined in our study are of the order of the characteristic horizontal length scale;
this is some orders of magnitude greater than the transition width (λ/δ̃ = 100). Thus,
even if lubrication theory is not formally valid in the proximity of the wettability
gradients, it would still be expected to hold up across the majority of the problem
domain.

Similar issues arise in the case where a surface has sharp topographical variations.
Stillwagon & Larson (1988, 1990) examined the levelling of oil films over trenches on
a stationary substrate and during a spin-coating process, obtaining good agreement
between the experimental results and simulations based on a lubrication model.
Pritchard, Scott & Tavener (1992) considered the flow of a viscous liquid down
an inclined plane perturbed by consecutive surface humps and found substantial
agreement between lubrication models and both experiments and full simulations.
Similar experiments by Decré & Baret (2003) also yielded results in good agreement
with lubrication models. Kalliadasis, Bielarz & Homsy (2000) acknowledged the
potential shortcomings of applying lubrication theory when encountering steep
topography but noted qualitative agreement with experiments in their parametric
study. Solution of the Stokes equations by Mazouchi & Homsy (2001) confirmed
that lubrication models become more quantitatively accurate with decreases in the
capillary number.

2.3. Numerical methods

Simulations were performed using (2.20) for homogeneous surfaces and (2.22) for
heterogeneous surfaces. In both cases, fourth-order centred finite differences with
periodic boundary conditions were used to discretize the equations. Gear’s algorithm
was employed for time stepping, owing to its effectiveness in dealing with the inherent
stiffness of the problem (Sharma & Jameel 1993; Konnur et al. 2000; Kargupta
et al. 2000; Zope et al. 2001). The method automatically adjusts the time step, and
this allows for large steps initially when the van der Waals driving force is weak
but very small steps when the final rapid rupture occurs. In the homogeneous case,
simulations were run with as few as 100 grid points per the most dangerous (i.e. fastest
growing) wavelength, which was more than sufficient to maintain mass conservation.
The heterogeneous case required more points to resolve the variations in A1(x), and
convergence analyses indicated that rupture times did not change significantly when
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the average height of the interface varied by less than 0.02 % at all times during
the course of a simulation. This criterion was used to determine the number of grid
points for each run, resulting in approximately 400 grid points per the most dangerous
wavelength (on the basis of the value for the corresponding homogeneous case). An
increase in the number of grid points from 400 to 500 results in a rupture time
variation of less than 0.1 %, the criterion for rupture being a minimum film height of
less than 1 × 10−4.

The initial conditions for each type of surface differed. A single wave of
dimensionless amplitude 0.05 was used as the initial interfacial position for the
homogeneous case. The wavelength was set to be that predicted to grow most rapidly
from linear theory (see § 3.1 below). This initial condition specifies the location where
rupture will occur: always at the minimum in the initial interfacial height. This is
acceptable for a simulation with homogeneous surfaces, where the time of rupture
is the sole quantity of interest. For the heterogeneous case, the location of rupture
is as important as the rupture time, so for this case a random initial condition was
employed by averaging a series of Fourier modes with random phases and amplitudes.
The largest wave was set to the length of the simulation domain, the remaining waves
descending in wavelength until the smallest wave was just smaller than λc/100, where
λc is the cutoff wavelength from linear theory. Multiple runs with different seed
numbers for the random-number generator confirmed that the key features of the
results are independent of the initial condition.

The domain of each simulation for the heterogeneous case consisted of a single
centred image region of length I with a non-zero A1(x) value, bounded by non-
image regions having A1(x) = 0. Motivated by prior work on flows over surfaces with
topographical variations (Stillwagon & Larson 1988), we employed an arctangent
function to describe A1(x):

A1(x) =
AIm

1

π

[
arctan

(
x + I/2

δ

)
− arctan

(
x − I/2

δ

)]
. (2.23)

This expression sets the coordinate axis at the centre of the image area. The
parameter AIm

1 is the desired magnitude of A1 in the image area and δ is a measure
of the width of the transition region between the image and non-image areas. The
parameter δ thus represents the steepness of the wettability gradients on a chemically
patterned substrate. This method is simple to implement but has certain drawbacks.
A large value of δ is necessary in order for the wettability gradients to be gradual
and lubrication theory to be valid (see § 2.2), but for a smaller image size this may
prevent the function from ever reaching the desired maximum, AIm

1 . An example is
given in figure 3, in which A1(x) given by (2.23) for x < 0, with I =0.3 and δ = 0.01,
is represented by a dashed line. Note that the function never reaches the desired
value AIm

1 = 1. Gradual slopes can also lead to finite A1(x) slopes at the edges of the
simulation domains, which are a problem since they make for a slope discontinuity
in applying periodic boundary conditions. Despite its drawbacks, however, the
expression is convenient to use and was employed in several of our simulations.

For simulations in which a greater degree of control over A1(x) was desired, a
new piecewise function was employed. This function exactly reaches the desired limits
(A1(x) = 0 on non-image areas and A1(x) = AIm

1 on the image areas) with gradual
slopes and continuous first and second derivatives throughout. The functions used to
connect the flat regions could be considered as flat circles, as they follow an equation
similar to that of a circle (r4 = x4 + y4) but have flatter edges. These functions have
regions with second derivatives equal to zero, which is their chief benefit. Pieces of
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Figure 3. Comparison of two different functions used to represent A1(x) in the simulations.
The dashed line represents the arctangent method, (2.23), and the solid line represents the
flat-circle method, (2.24). The two lines cross at x = −I/2.

a pair of stretched and shifted flat circles can be used to transition smoothly from
regions where A1 = 0 to regions where A1 = AIm

1 , with a desired slope. The equations
for each piece are

A1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � x1

AIm
1

2r

{
r −

∣∣∣∣r4 − (x − A1(x)δ

AIm
1

− x1)
4

∣∣∣∣
1/4

}
, x1 < x � −I/2

AIm
1

2r

{
r +

∣∣∣∣r4 − (x − A1(x)δ

AIm
1

− x2 + δ)4
∣∣∣∣
1/4

}
, −I/2 < x � x2

AIm
1 , x2 < x,

(2.24)

where x1 = (−1/2)(I + δ) − r and x2 = (−1/2)(I − δ) + r . For the curving sections,
A1(x) is obtained by solving the nonlinear equation with Newton’s method. With this
flat-circle technique, the curvature (via parameter r) and slope (with parameter δ) of
A1(x) can be controlled independently. The piecewise function is plotted, for I = 0.3,
δ =0.01, r =0.1, and AIm

1 = 1, with a solid line in figure 3, and labelled to indicate
how the parameters δ and r contribute to the function’s shape.

The periodic boundary conditions specify that the length of the simulation domain
is equal to the period length, P , indicated in figure 1. A set of simulations was
performed to contrast the effects of including multiple image regions within the
periodic domain as against including only the single region described above. These
simulations revealed that rupture times and interfacial profiles did not change when
multiple image areas were included, verifying that the periodic boundary conditions
are sufficient to account for any short- or long-range cooperative processes that might
occur between the separate image regions.

3. Interfacial behaviour between homogeneous surfaces
Before examining the behaviour of the liquid–liquid interface between hetero-

geneous surfaces, it is valuable to understand its behaviour between homogeneous
surfaces. We first consider the linear stability of (2.20), then perform simulations to
examine the nonlinear behaviour that develops over time.
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3.1. Linear stability analysis

Application of standard linear stability analysis to (2.20) yields an expression for the
dimensionless growth rate, α:

α =
k2[h0(µr − 1) + 1]

f (h0, µr )

[
A1

(1 − h0)
3

h0

+ A2

h3
0

1 − h0

− k2γ h3
0(1 − h0)

3

]
, (3.1)

where k is a dimensionless real-valued wavenumber and h0 is the dimensionless initial
interfacial height, h0 =h1/htot . This expression is consistent with those obtained by
Joo & Hsieh (2000) and Merkt et al. (2005). The growth rate is purely real, with
positive (negative) values indicating instability growth (decay). Figure 4 shows α

versus k for various initial heights and viscosity ratios. An asymmetric attraction
of the interface to the lower surface is considered, with A1 = 2, A2 = 1, and γ = 1.
The interface is stabilized for short waves (k > kc) but is destabilized by long waves
(k < kc), the maximum growth rate occurring at kmd . Expressions for kc and kmd can
be obtained analytically from (3.1), with cutoff wavenumber

kc =

[
1

γ

(
A1

h4
0

+
A2

(1 − h0)4

)]1/2

, (3.2)

and the most dangerous wavenumber as kmd = kc/2
1/2. For the cases shown in

figure 4(a) the interface is most unstable for a smaller initial height, such as h0 = 0.25,
owing to the close proximity to the highly attractive lower surface, and most stable
far from both attractive surfaces, as when h0 = 0.5. The non-monotonic behaviour of
kmd as h0 is varied reflects the changing importance of surface-tension forces relative
to van der Waals forces in (3.2). The former are larger than the latter near h0 = 0.5,
which leads to damping of short-wavelength disturbances and relatively small values
of kmd . Figure 4(b) shows that variations in µr have no effect on kc and kmd but a
significant effect on the growth rate. Interfacial disturbances will grow much more
slowly at high µr , owing to viscous dissipation.

Figure 5 shows initial and rupture interfacial profiles from a simulation of (2.20)
with A1 = 1, A2 = 0, γ = 1, µr = 1, and h0 = 0.5 and domain size 3λmd . Here λmd

is the most dangerous wavelength and is given by 2π/kmd . The simulation starts
with a randomly perturbed interface, generated in the manner described in § 2.3 for
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maximum, when rupture occurs simultaneously on both bounding surfaces. The corresponding
initial height is denoted h0 = h∗

0 and is indicated by a vertical dashed line in the above plots.

the heterogeneous case, and ends with rupture and verification that the most rapidly
growing disturbance has wavelength λmd . These results provide a justification for using
the simple initial conditions for the homogeneous case that were described in § 2.3
and will serve as an important contrast to the rupture profiles between heterogeneous
surfaces presented in § 4.

3.2. Film rupture between homogeneous surfaces

We focus on the behaviour of the rupture time, tr , in our study for two reasons. First,
as will be seen in § 4, variations in the rupture time indicate variations in the rupture
mechanism. Second, the rupture time is a key time scale for applications where either
the maintenance of a uniform liquid film or the creation of patterns via intentional
ruptures is desired. Figure 6 shows typical plots of rupture time versus initial height.
In figure 6(a), each curve corresponds to a different set of Hamaker constants, with
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Figure 7. Plots of (a) critical height h∗
0 and (b) maximum rupture time tmax

r vs. A2 for
viscosity ratio µr = 0.01, 1, and 100. In each simulation, A1 = 2 and γ = 1.

γ = 1 and µr = 1. The presence of an attraction only to the lower solid (A1 = 2, A2 = 0)
leads to a very small rupture time for small h0 values, since the interface is in close
proximity to the attractive solid. The increase in rupture time with larger h0 values is
very rapid, since the magnitude of the van der Waals force decreases as h−3. Even for
very large values of h0, rupture always occurs in a finite amount of time. The curves
for A1 = 0 and A2 = 1 in figure 6(a) show analogous behaviour. Since the attraction
is smaller than in the previous case, the rupture times increase more rapidly. The
shapes of these two curves together are suggestive of what the curve looks like for
an interface attracted to both solid boundaries at the same time, a case considered
by Joo & Hsieh (2000) only for symmetric Hamaker constants. The third curve of
figure 6(a) shows that when A1 = 2 and A1 = 1 the rupture times approach zero as
h0 → 0 or h0 → 1, when the interface is near each attractive surface. The rupture times
increase more gradually with distance from the attractive solids than in the previous
cases since the interface is subject to cooperative attractions in both directions. The
most significant point is the maximum rupture time, tmax

r , which occurs at nearly the
same initial height as the height where the previous curves cross. This initial height,
labeled h∗

0, marks the initial condition that will lead to a simultaneous rupture on
both bounding surfaces. Interfacial rupture will occur first on the lower surface for
smaller initial heights, or the upper surface for larger initial heights. Here h∗

0 > 0.5,
since the stronger attraction to the lower surface will cause interfacial rupture to
occur there first for a wider range of initial heights.

The values of h∗
0 and tmax

r can be determined for any set of A1, A2, γ , and µr .
Figure 6(b) (A1 = 2, A2 = 1, and γ = 1) shows that increasing the viscosity ratio leads
to an expected increase in tmax

r but also a slight increase in h∗
0. Thus, as the top layer

becomes more viscous, rupture occurs there first for a smaller range of initial heights.
Figure 7 shows the dependence of tmax

r and h∗
0 on the Hamaker constants and the

viscosity ratio in more detail, with A1 = 2 and γ = 1. As A2 increases, both h∗
0 and

tmax
r decrease, which is indicative of the increased range of the interfacial attraction
to the upper surface. Increases in µr lead to increases in h∗

0 and tmax
r , consistently with

figure 6(b).
Figure 8 shows the rupture-time curves for different values of the interfacial tension

and makes clear the dependence of h∗
0 and tmax

r on this parameter. An increase in
γ by any factor will shift the entire tr curve upward by this same factor, thereby
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keeping h∗
0 constant. The interfacial tension acts as a retarding force for rupture,

so the increase in rupture time is certainly expected. The exactness of the effect
can be explained by examining the two important limits of the evolution, the initial
and final growth. The growth rate of the initial disturbance is given by (3.1), and
substitution of the expression for kmd into this equation shows that the initial growth
rate is inversely proportional to γ . By ‘final growth’ we refer to the approach of
the interface to the singularity of film rupture. Zhang & Lister (1999) constructed
similarity solutions for this approach in the case of a single liquid film, finding that
the minimum interfacial height decreased with (tr − t)1/5, where tr − t is the time until
rupture and is proportional to the surface tension. This single-liquid result can be
extended to the case of stratified liquid films via a simple scaling analysis and shows
that the time until rupture will indeed be proportional to γ . Thus both the initial
and final limits of evolution exhibit the same dependence on the interfacial tension,
leading to the expected effect on the rupture time.

4. Interfacial behaviour between heterogeneous surfaces
We first discuss the roles of wettability gradients, image size, and period size on

rupture-time behaviour and then examine the underlying mechanisms. The results of
a parametric study are also presented.

4.1. Roles of wettability gradients and image size

Two important horizontal length scales arise in the simulations with heterogeneous
surfaces. The first is the ‘natural’ length scale, given by the value of λmd for a
homogeneous surface (I = P ). The second is the ‘imposed’ length scale, given by the
image size I . The presence of this second length scale leads to very different rupture
behaviour, as shown in figure 9. Here A1(x) is given by (2.23), with δ = 0.01, AIm

1 = 1,
and I = 0.65P . Rupture appears to occur at two locations, both near the edges of
the image area. Asymmetry in the initial condition causes rupture to occur at the
left-hand edge first; symmetric initial conditions lead to simultaneous rupture with
insignificant rupture-time variation. Figure 9 can be contrasted with figure 5, which
corresponds to a homogeneous surface (I = P ) and has all other parameters the



Competitive displacement of thin liquid films on chemically patterned substrates 47

x

In
te

rf
ac

ia
l h

ei
gh

t

–3 –2 –1 0 1 2 3
0

0.2

0.4

0.6

0.8

1.0 Initial height
Height at rupture
A1(x)

I

Figure 9. Interfacial profiles initially and at rupture for a spatially-varying van der Waals
attraction. Here A1(x) is generated by the arctangent method with δ = 0.01, AIm
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I = 0.65P . This simulation has a domain length of 3λmd , with A1 = 1, A2 = 0, γ = 1, µr = 1,
and h0 = 0.5. Rupture occurs at a dimensionless time of tr = 0.9.

same. The key difference between the two is the action of wettability gradients in the
heterogeneous case, described in § 2.1 and below. These gradients lead to rupture times
approximately an order of magnitude faster than the corresponding homogeneous
case (tr = 0.9 versus tr = 7.3 for the homogeneous case).

Also captured in figure 9 is evidence of an emulsification mechanism. This
mechanism is initiated by the two nearly simultaneous ruptures of the film of liquid 1,
which allow liquid 2 to contact the lower surface. Since liquid 2 preferentially wets the
image area, spreading of liquid 2 from each rupture location would occur, with pockets
of liquid 1 becoming trapped when multiple spreading fronts of liquid 2 contact each
other. Such emulsification is a recognized characteristic of the lithographic printing
process, in that some water is always entrained in the ink that is transferred to the
printing plate.

Variation in the image sizes will lead to very distinct variations in rupture time,
as first noted by Konnur et al. (2000) in their study of single liquid films dewetting
on chemically heterogeneous substrates. For the case of an isolated image area, they
reported that rupture times are only independent of image size when that size is
above a certain critical value. A plot of rupture time versus image size is given in
Kargupta et al. (2000). An analogous plot for the case of stratified films is given in
figure 10, which also shows curves for various domain (period) sizes. This plot differs
from that given in Kargupta et al. (2000) by encompassing both small image and
small non-image areas (non-isolated patterns). In considering only small images, the
plot in this paper terminates in a plateau on the right-hand side.

The rupture-time curves for four different period sizes given in figure 10 share
some generic features. The peaks and valleys on the left-hand side of each curve
result from effects due to small image areas, and the features on the right-hand side
of each curve correspond to small non-image areas. Each curve shows the limit of
no attraction (tr → ∞ as I → 0) and homogeneous attraction (as I → P ). For larger
domains (P = 3λmd and 5λmd ) the left- and right-hand side features are connected by
a plateau region. The smallest integer multiple of λmd to exhibit all the above features
is P = 3λmd , which was chosen for our study. In the following section, we probe the
mechanisms underlying the various generic features of the rupture-time behaviour.
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4.2. Mechanisms underlying rupture-time behaviour

The results for P = 3λmd shown in figure 10 can be rescaled by replacing tr with tr/tmin
r

on the ordinate, where tmin
r is the global minimum of the rupture time. The minimum

rupture time now occurs at tr/tmin
r = 1, as shown in figure 11. As will be seen in

§ 4.3, the behaviour of this rescaled rupture time is relatively robust to changes in the
various problem parameters. The image sizes at which four important curve features
occur have been labeled IA, IB , IC , and ID . Each feature corresponds to a distinct
interfacial profile resulting from a particular pathway to film rupture. To illustrate
this, figure 12 shows the shape of the liquid interface at rupture for the four critical
image sizes, along with the function A1(x) to indicate the boundaries of the image
(the flat-circle method, r =0.1, δ = 0.01). The mechanisms that lead to the features at
image sizes IA and IB for a single liquid film were discussed qualitatively by Kargupta
et al. (2000). We will proceed with a more quantitative analysis of the stratified case
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figure 11.

by examining the three flow-rate components involved in the rupture process;
cf. (2.22).

The profile shown in figure 12(a) represents the global minimum of the rupture
time and corresponds to image size IA. Figure 13 shows plots of the three flow-rate
components of liquid 1 for three different stages of evolution: 20 % completion, 90 %
completion, and over 99 % completion. The bold line in each plot is the overall
flow rate, and the location of eventual rupture is indicated by the behaviour of this
curve. We may call this location xr ; here the overall flow rate of liquid 1 is zero
but the slope of the flow-rate curve is positive, so for this image size xr =0. The
liquid in film 1 left of xr is driven to the left (negative flow rate), and the liquid to
the right of xr is driven to the right (positive flow rate). As liquid 1 is driven away
from this point it is replaced by liquid 2, a process which continues until liquid 2
makes contact with solid 3 at rupture. Regardless of image size, in the early stages
of evolution the dominant flow is due to wettability gradients (and the oppositional
capillary flow). These gradients act to locally thin liquid 1 near the edges of the image,
which are located at the flow-rate spikes in figure 13(a). Figure 13(b) shows that as
the film is thinned further the wettability contribution begins to become important.
At xr the wettability flow rate is also zero, sloping positively, but is opposed by the
negatively sloping capillary-flow rate. Finally, near the time of rupture, the wettability
component begins to dominate (figure 13c). The increase in relative magnitude of the
wettability driven flow can be attributed to its being proportional to 1/h4, while the
wettability-gradient flow rates are only proportional to 1/h3. Thus, the film of liquid 1
thins relatively slowly initially, but much more rapidly as rupture is approached.
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Figure 13. The three flow-rate components of liquid 1 and their sum for interfacial evolution
above an image of size IA at (a) 20 % completion, (b) 90 % completion, and (c) over 99 %
completion.

The image size IA corresponds to a global minimum of the rupture time because
of the cooperation of the wettability and wettability-gradient flow rates. The image is
small enough that the wettability gradients on both edges of the image may cooperate
to thin liquid 1 at the image centre. Each gradient acts to drive liquid 1 away from
the image area, and wettability effects add to this gradient-driven flow as the film
becomes even thinner. Thus, IA could be thought of as the optimum length scale for
film rupture, which for the base case is equal to 0.3λmd . Throughout the remainder
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Figure 14. The three flow-rate components of liquid 1 and their sum for interfacial
evolution above an image of size IB at 90 % completion.

of the paper this will be referred to as the ‘rupture’ length scale, the image size
corresponding to the most rapid rupture of the lower film.

An increase in image size begins to put the driving forces for rupture into conflict,
leading to the rupture profile shown in figure 12(b). Here the image size IB is large
enough for two separate regions of the lower film to be thinned by wettability
gradients, each region occurring just inside the edges of the image. This is again
seen in the flow-rate plot for 90 % completion in figure 14. At the point x ′

r at the
image centre, the overall flow rate equals zero and has a positive slope indicating
that liquid 1 is being driven away on either side. However, the wettability flow rate
equals zero with a negative slope at this point, indicating that the wettability term is
actually driving flow towards x ′

r . Since it has been shown that the wettability term
is dominant near rupture, this suggests that rupture will not occur at this location.
Instead, rupture appears more likely to occur at the two neighbouring points at which
the wettability flow rate is zero with a positive slope, x(1)

r and x(2)
r . The proximity of

these points to each other is a major reason for the increase in rupture time. The length
of the image area, IB , is 0.8λmd , which suggests that if two ruptures with the opti-
mum rupture length of 0.3λmd form then they would be separated by only the small
distance of 0.2λmd . (We note that two ruptures can form simultaneously at this image
size if a symmetric initial condition is used.) As will be seen below, 0.2λmd is less
than the optimum separation length scale, leading to regions of high curvature and
strong opposition from capillary flows. This opposition is eventually overcome by
wettability-driven flows but not before an increase in rupture time occurs.

Cooperation between driving forces is again possible with a further increase in the
length of the image. Figure 12(c) shows the interfacial profile at rupture for image size
IC , and the flow-rate plot for 90 % completion in figure 15 suggests why the rupture
time is considerably smaller than in the previous case. Here, a pair of points, x(1)

r

and x(2)
r , follows the rupture behaviour described with respect to image size IA: the

overall flow rate equals zero with a positive slope, being driven by the positive-sloping
wettability flow rate (which drives liquid 1 away from each x(i)

r ). In contrast with the
flow rates shown for image size IB (figure 14), the capillary flow rate is negligible at
the centre of the image. In this case, the thinned regions are far enough apart that the
interface can hold the displaced liquid 1 at the image centre below a region of reduced
curvature. Therefore nearly simultaneous ruptures may form more easily at x(1)

r and
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Figure 15. The three flow rate components of liquid 1 and their sum for interfacial
evolution above an image of size IC at 90 % completion.

x(2)
r . Note that since IC = 1.1λmd and the length scale of each of the two ruptures

is again the optimum length scale, 0.3λmd , the centre region has length 0.5λmd . This
‘separation’ length scale is larger than the 0.2λmd distance between ruptures for image
size IB and will be referred to again shortly.

An increase in the image size to a length between the lengths of IC and ID results
in a rupture time in the plateau region of figure 11. An interfacial profile in this
region was shown in figure 9, in which ruptures appear to occur near the two image
edges with only a slightly curved interface above the image centre. The flow-rate plot
is qualitatively similar to that shown in figure 15. In the plateau region, the ruptures
at the image edges are essentially independent of each other, which is consistent with
zero flow rate at the image centre.

The next important limit occurs when the distance between image areas is small
enough for interaction across non-image areas. The corresponding interfacial profile
is shown in figure 12(d ), where I = ID . The flow-rate plot is again qualitatively similar
to that corresponding to the image size IC (figure 15). Now, however, the smallest
region between the rupture points is a non-image area, which lacks a van der Waals
attraction. Without this attraction to retard the interface as it is driven upwards by
the displaced liquid 1 (which is being driven off the image areas onto the non-image
areas), rupture will occur slightly faster. The significant length scale here is not ID

but P − ID , the length of the non-image area. This is the same separation length scale
mentioned in conjunction with image size IC and is approximately equal to 0.5λmd .
As with IC , a minimum in the rupture time is observed for this image size.

4.3. Parametric study

We now explore how the rescaled rupture-time curve, figure 11, changes as various
problem parameters are varied. As an example, figure 16 shows several curves
corresponding to different viscosity ratios µr . The basic effect of an increase in
µr is an increase in the rupture time, as discussed in § 3.2. In terms of the rescaled
rupture-time curve, we see that the effect of a viscous top layer on the curve shape is
minor. One apparent trend is the increase in the lengths of IA, IB , and IC with µr . Also
the ‘span’ of the plot, or difference between the rescaled rupture times corresponding
to the global minimum and the nearby steep maximum, increases with µr . In contrast,
the separation length scale P − ID does not change with the viscosity ratio. In fact,
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Parameter Effect Effect Effect
being increased on tr on IA,B,C on span

µr increase increase increase
h0 increase increase increase
δ increase increase decrease
γ increase no change increase

AIm
1 decrease increase decrease

Table 1. Effects of parameter variation on the rescaled rupture-time plot.

this length scale will not change with any variation in the problem parameters,
thus affirming its significance. Another surprising constant is the interaction between
certain length scales. For any variation in the problem parameters, the value of IC

can be determined as a function of the separation and rupture length scales:

IC = 2IA + P − ID. (4.1)

This relationship can be conjectured by recognizing that the shape of the interface at
rupture for image size IC (figure 12c) appears to consist of two ruptures having the
optimum rupture length scale IA and separated by the optimum separation length
scale P − ID . This equality was valid for every simulation we conducted. The value
for IB does not have such an exact relationship but clearly does depend on the same
length scales. An approximate empirical relationship is

IB ≈ IA + 0.6(IC − IA). (4.2)

The effect of varying other parameters on the key features of the rescaled rupture-
time curve is summarized in table 1. Only the simulations in which µr was varied
used the arctangent function to describe the spatial variation in A1(x); the method of
‘flat-circles’ was used in the other cases because of the need for precise slope control.
The effects on rupture time shown here are simple to understand and again follow
the patterns set forth in § 3.2. Not covered in that discussion, however, was the effect
of physical wettability gradients on rupture time. An increase in the parameter δ

decreases the magnitude of the wettability gradients and the flows driven by them,
thereby leading to an increase in rupture time. We note that for values of δ less
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than 0.01, the rupture time decreases by less than 0.2 %. However, increasing δ to 0.5
results in a 10 %–15 % increase in rupture time.

Clear trends are also observed for the length scales IA, IB , and IC , which increase
with an increase in any problem parameter except for γ , and the span for each curve.
Since P − ID is constant with any parameter variation and the length scales IB and
IC are strongly dependent on the rupture length scale IA, the length-scale increases
can be examined solely as an increase in IA. Changes in the span indicate differences
in the relative speed of rupture for image sizes IA and IB , beyond that which was
accounted for by a rescaling of the rupture time. Although each parameter change
given in table 1 leads to a very particular trend in the curve shape, a single simple
theory justifying each trend appears unlikely. Nevertheless, figure 16 and table 1
illustrate that the shape of the rescaled rupture-time curve is remarkably robust to
changes in the problem parameters.

5. Conclusions
We have studied the behaviour of stratified thin liquid films between parallel

surfaces under conditions where van der Waals forces drive dewetting. Lubrication
theory was applied to derive a nonlinear evolution equation for the interfacial height,
and its linear stability and nonlinear behaviour were investigated. In the case where
the bounding solid surfaces are chemically homogeneous, the two films can undergo a
competitive displacement in which one film tries to displace the other from the surface
with which it was originally in contact. At a critical value of the initial interfacial
height, rupture occurs simultaneously on both bounding surfaces and the rupture
time exhibits a maximum.

Chemical heterogeneity introduces an additional competition between the length
scale of the heterogeneity and the most dangerous wavelength for the corresponding
homogeneous surface. This competition leads to a strong dependence of the rupture
time on the ratio of these length scales. Film thinning and displacement are initiated
by wettability gradients at the edges of the image areas (which represent the
heterogeneity) and are accelerated by the wettability itself, close to film rupture.
If the image area is narrow enough then only a single rupture will occur, whereas if it
is above a certain width then a rupture will occur near each of the image-area edges.
When these two ruptures do occur they will interact strongly with each other via
capillary forces if the image area is still rather narrow and produce a maximum in the
rupture time. Widening the image area causes the two ruptures to occur independently,
and when the non-image area becomes sufficiently narrow, the ruptures again interact
but across the non-image areas. The maximum and minima observed in the rupture
time (figure 11) can be understood in terms of optimum length scales for rupture and
for the separation distance between ruptures. The behaviour of the rescaled rupture
time is also found to be relatively independent of changes in the other problem
parameters.

The present work bridges an important gap between previous work on stratified
thin liquid films between chemically homogeneous surfaces and work on single thin
liquid films on chemically heterogeneous substrates. In particular, the configuration
considered here is especially relevant to the lithographic printing process. Results from
our nonlinear simulations in the heterogeneous case suggest a mechanism by which
one liquid can be emulsified into the other. As the degree of emulsification will affect
print quality, our results imply that it should be possible to control this through the
size of the image area (or the size of the pixels that comprise an image area). Although
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a number of other factors are likely to be important (e.g. shear, substrate porosity
and roughness, non-Newtonian rheology), the present work provides a starting point
for accounting for those effects.

Another issue worthy of pursuit is the effect of a short-range repulsion on the results
described above. Although it would not change the initial thinning of the lower layer
due to wettability gradients, it would eliminate the singularity which occurs at film
rupture and allow the system to continue to evolve to a steady configuration. Such
steady patterns could play a role in microfluidic devices for creating droplet arrays,
which are of considerable interest for applications requiring reproducible parcels of
liquids in multiphase flows (Squires & Quake 2005).
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